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Lecture 3: Concentration Inequalities and Mean Estimation
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1 Overview

In this lecture, we’ll quickly recap how an optimization algorithm that fails with constant
probability can be adapted into a high probability one. Then, we’ll introduce two concentra-
tion inequalities – Hoeffding’s inequality and Bernstein’s inequality – for analyzing
the sample complexity of the sample mean for estimating the mean of an underlying distri-
bution. We also state (without proof) a sample complexity lower bound that demonstrates
the sample mean of independent random variables, in non-asymptotic regimes, is a poor
estimator for their true mean, and introduce a more robust estimator known as the Median
of Means algorithm.

2 Recap from Last Class

Suppose we have an optimization problem specified by an objective function f : S → R
subject to a set of constraints {C1, . . . , Ck}, where S is any set and Ci ⊆ S for all constraints.

Definition 3.1 We say that y ∈ S is a feasible solution to our optimization problem if
y ∈

⋂k
i=1Ci.

The objective of the optimization problem is to find a feasible solution x that either maxi-
mize or minimize f(x). WLOG suppose we want to maximize f .

Now, suppose there exists an algorithm D that, with probability ≥ 2
3 , returns an answer z

so that f(z) ≥ OPT−ε with a promise that z ∈
⋂k
i=1Ci, where OPT is the global maximum

of f . Notice that the promise ensures that the algorithm returns a value that is feasible if
it succeeds.

Now, we can design a new algorithm D′ that uses D as a subroutine to solve the opti-
mization problem with high probability. In particular, given δ ∈ (0, 1), D′ should run D for
n = Θ(log(1δ )) iterations and return the largest feasible value returned by D. To see why
D′ is correct, first notice that the promise ensures that every time D succeeds, the solution
returned by D is feasible. Therefore, the maximum of feasible solutions is also feasible and
will also be greater than OPT− ε by definition. Hence, D′ returns a valid solution if after n
runs of D, at least one valid solution is returned by D. It then follows that the probability
D′ fails is (1− 2

3)n = 1
3n . Therefore,

1

3n
≤ δ ⇐⇒ −n log(3) ≤ log(δ) ⇐⇒ n ≥ log

(
1

δ

)
/ log(3)

So, if D′ runs D for Θ(1δ ) iterations, D′ will return a correct solution with probability at
least 1− δ, as desired.
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This example, along with the examples we saw last lecture, demonstrates that many con-
stant probability algorithms can be converted to high probability algorithms relatively eas-
ily. So, before designing a high probability algorithm, you should always consider whether
a constant probability algorithm would be sufficient for your problem. Moreover, we can
generalize to the following this heuristic:

Heuristic 3.2 When designing high probability algorithms, the sample / query complexity
q(δ) of your algorithm should be at least as good as q(δ) = O(q(13) log(1δ )). Otherwise, a
constant probability algorithm combined with a boosting technique (e.g. finding the median or
max of solutions returned by a constant probability algorithm) will improve the δ dependence
to the multiplicative log(1δ ) factor. Moreover, note that the log(1δ ) term is not tight for all
problems; we can sometimes do better than this!

3 Concentration Inequalities for Mean Estimation

First, we’ll derive two concentration inequalities – Hoeffding’s inequality and Bernstein’s
inequality – and use them to evaluate the sample complexity of the sample mean when
estimating the true mean of a collection of i.i.d. random variables.

Remark 3.3 For the theorems below, we’ll be assuming that all random variables are one
dimensional.

Lemma 3.4 (Hoeffding’s Lemma) Let X be a real-valued random variable so that

P(X ∈ [a, b]) = 1 for some a < b and E[X] = 0. Then, E[etX ] ≤ e
t2(b−a)2

8 .

Remark 3.5 The proof of Hoeffding’s lemma is complex and involves some calculus, so it
was not be covered in class. Nevertheless, the intuition is to notice x → ext is convex and
thus Jensen’s inequality can be applied.

Theorem 3.6 (Hoeffding’s Inequality) Let {Xi}ni=1 be independent random variables so
that P(Xi ∈ [a, b]) = 1 for some a < b, and let ε > 0. Then:

1. P(Xn − E[Xn] ≥ ε) ≤ e
−2nε2

(b−a)2

2. P(Xn − E[Xn] ≤ −ε) ≤ e
−2nε2

(b−a)2

3. P(|Xn − E[Xn]| ≥ ε) ≤ 2e
−2nε2

(b−a)2

Proof. We will first show (1) and use it to easily prove (2) and (3). Now,

P(Xm − E[Xn] ≥ ε) ≤ inf
t>0

E[et(Xn−E[Xn])]

etε

= inf
t>0

E[e
t
n
(
∑n
i=1Xi−E[Xi])]

etε

= inf
t>0

∏n
i=1 E[e

t
n
(Xi−E[Xi])]

etε
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by Lemma (2.8) and since X1, . . . , Xn are independent. By applying Hoeffding’s lemma to
this inequality, we have that

inf
t>0

∏n
i=1 E[e

t
n
(Xi−E[Xi])]

etε
≤ inf

t>0

∏n
i=1 e

(t2/n2)(b−a)2
8

etε

= inf
t>0

e
(nt2/n2)(b−a)2

8

etε

= inf
t>0

e
(t2/n)(b−a)2

8
−tε

Recall that ex is an increasing function, so the infimum of e
(t2/n)(b−a)2

8
−tε will be determined

by the minimum value of (t2/n)(b−a)2
8 − tε. Furthermore, this is a quadratic function, which

implies that the minimum of (t2/n)(b−a)2
8 − tε will be −y2x where x = (b−a)2

8n and y = ε. There-
fore, the minimum occurs at t = 4nε

(b−a)2 . Moreover, since t > 0, we can bound the infimum

by t = 4nε
(b−a)2 .

Now, it follows that

inf
t>0

e
(t2/n)(b−a)2

8
−tε = e

−2nε2

(b−a)2

Hence, inequality (1) follows. By negating Xn and translating, we get inequality (2).

Finally, by combining inequalities (1) and (2), we have that

P(|Xn − E[Xn]| ≥ ε) = P(Xn − E[Xn] ≥ ε) + P(Xn − E[Xn] ≤ −ε) ≤ 2e
−2nε2

(b−a)2

which proves inequality (3).

Corollary 3.7 Suppose that {Xi}ni=1 are i.i.d. random variables so that P(Xi ∈ [a, b]) = 1,
with a < b, holds for all Xi. Then, given ε > 0, the sample complexity of the sample mean
required to estimate E[X] to an additive error ε while only failing with probability at most δ

is n = O(σ
2

ε2
+ M

ε ) log(1δ ).

Proof. Let ε > 0. Now, the probability of failure for this problem is P(|Xn − E[Xn]| ≥ ε).

Furthermore, by Hoeffding’s inequality, we have that P(|Xn − E[Xn]| ≥ ε) ≤ 2e
−2nε2

(b−a)2 .
Hence, it follows that

2e
−2nε2

(b−a)2 ≤ δ ⇐⇒ n ≥ (b− a)2

2ε2
log

(
2

δ

)
Thus, we should select n = O

(
(b−a)2
ε2

log
(
1
δ

))
to estimate the mean of {Xi}ni=1 to an additive

error ε.

Is this a good sample complexity? In other words, can we exploit any more information
about {Xi}ni=1 to reduce the sample complexity of this problem? Yes, in many cases we
can further reduce the sample complexity. To see why this is intuitively true, suppose you
have a collection of i.i.d. random variables X1, . . . , Xn that are drawn from a distribution
that has high probability mass in the interval [0, 1] and zero mass outside of this interval,
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Figure 1: How outliers can hurt sample complexity when using Hoeffding’s inequality. In
this case, the interval [a, b] must be large enough to contain the points located in the green
probability mass, making [a, b] quite large and thus increasing the sample complexity. In
this case, M represents the distance from the mean of the distribution to the center of the
outlier probability mass.

with the exception of one small interval [α, β] with non-zero probability mass and 1 � α.
Then, since P(Xi ∈ [α, β]) > 0 for all Xi, b is forced to be greater than or equal to β (See
Figure 1 for a visual example of this). However, if the mass in [α, β] is sufficiently small,
then n samples will not see anything outside [0, 1], making Hoeffding’s inequality very loose.
The variance is a much more robust way to measure the ”width” of a distribution than the
interval covering all its probability mass.

Hence, the robustness of variance motivates our next inequality: Bernstein’s Inequal-
ity, which uses variance information to achieve a tighter bound.

Theorem 3.8 (Bernstein’s Inequality) Let {Xi}ni=1 be independent random variables so
that P(|Xi−E[Xi]| ≤M) = 1 holds for all Xi for some M ≥ 0. Also, let σ2 = 1

n

∑n
i=1 Var[Xi].

Then,

P(Xn − E[Xn]) ≤ exp
−nε2

2σ2 + 2Mε
3

Remark 3.9 The proof of this is quite complicated and was not covered in lecture.

Corollary 3.10 Suppose that {Xi}ni=1 are i.i.d. random variables so that P(|Xi −E[Xi]| ≤
M) = 1 holds for all Xi for some M ≥ 0. Then, given ε > 0, the sample complexity of the
sample complexity required to estimate E[X] to an additive error ε while only failing with

probability at most δ is n = O(σ
2

ε2
+ M

ε ) log(1δ ).

Proof. Fix ε > 0. Then, the probability of failure is P(Xn − E[Xn] ≥ ε). By Bernstein’s

inequality, we have that P(Xn − E[Xn] ≥ ε) ≤ exp −nε2
2σ2+ 2Mε

3

. Therefore, it follows that

exp
−nε2

2σ2 + 2Mε
3

≤ δ ⇐⇒ nε2

2σ2 + 2Mε
3

≥ log

(
1

δ

)
⇐⇒ n ≥

(
2
σ2

ε2
+

2

3

M

ε

)
log

(
1

δ

)

Therefore, n = O
(

(σ
2

ε2
+ M

ε ) log(1δ )
)

, as desired.
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So, making essentially the same assumption that the random variables are bounded in an
interval of width O(M) = O(b − a), we have two possible sample complexities for the

sample mean to choose from: n = O
(
(b−a)2
ε2

log
(
1
δ

))
(derived from Hoeffding) and n =

O
(

(σ
2

ε2
+ M

ε ) log(1δ )
)

(derived from Bernstein) when estimating the mean of independent

random variables. It’s therefore natural to ask if and when the second sample complexity
is better than the first.

The fundamental insight is that when the standard deviation σ of the random variables
is significantly smaller than M , in other words σ �M , the sample complexity provided by
Bernstein’s inequality is tighter since the bound provided by Hoeffding’s inequality grows
quadratically with M . This is intuitive because factoring in information about variance will
allow us to better approximate the underlying behavior of the random variables, requiring
fewer samples to approximate their mean. In the regime where σ ≈ M , the two sample
complexities are asymptotically the same, so Bernstein’s inequality will provide minimal
benefit over Hoeffding’s inequality. Nevertheless, Bernstein’s inequality provides a sample
complexity at least as good as that given by Hoeffding’s inequality because σ2 ≤ O(M2)
always holds.

4 Comparison with CLT; Median of Means Method

In statistics, the sample mean of a collection of independent random variables is often
used to estimate their true mean. Moreover, the central limit theorem states that the
sample mean Xn of a collection of i.i.d. random variables X1, . . . , Xn exhibits Gaussian-like
behavior 1 as n → ∞. Yet, as we’ll see, in the non-asymptotic regime, when estimating
E[Xn] with high probability, Xn does not behave necessarily like a Gaussian – no matter
what concentration inequality you use to bound the sample mean. The upside, however,
is that in the constant probability regime (i.e. when the probability of error is fixed), Xn

does provide Gaussian-like guarantees on sample complexity! Using this, we will introduce
the Median of Means algorithm which estimates E[Xn] with high probability while also
giving Gaussian-like performance.

To start our analysis, recall that given i.i.d. Gaussian random variables X1, . . . , Xn ∼
N (µ, σ2), we have that

P(|Xn − E[Xn]| ≥ ε) ≈ exp
−nε2

2σ2

Therefore,

exp
−nε2

2σ2
≤ δ ⇐⇒ n ≥ 2

σ2

ε2
log

(
1

δ

)
So, the sample complexity of the sample mean is n ≈ 2σ

2

ε2
log
(
1
δ

)
when X1, . . . , Xn are

Gaussian. Given this, we can show that the sample complexity derived from Bernstein’s
inequality is not Gaussian in all regimes:

Proposition 3.11 n = O((σ
2

ε2
+ M

ε ) log(1δ )) is worse than n = O(σ
2

ε2
log
(
1
δ

)
) and thus

the sample complexity of the sample mean given by Bernstein’s inequality does not give
Gaussian-behavior in all regimes.

Proof. There are three distinct cases:

1A similar statement holds for independent but not identical random variables, requiring additional
constraints on the moments of these random variables. See Lyapunov’s CLT for more information.
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1. Case 1: ε � σ2

M . Since σ2

ε2
has an inverse square dependence on ε, we have that

M
ε �

σ2

ε2
. Therefore, O

(
(σ

2

ε2
+ M

ε ) log(1δ )
)

provides a worse sample complexity than

O
(
σ2

ε2
log
(
1
δ

))
in this case. Note that this is the case that concretely shows that

Bernstein’s inequality does not give a Gaussian-like sample complexity for the sample
mean.

2. Case 2: ε = Θ(σ
2

M ). Then, M = Θ(σ
2

ε ). So then follows that M ≈ σ2

ε . So by

substituting this value of M into O
(
σ2

ε2
+ M

ε

)
, we have that

O

(
σ2

ε2
+
M

ε

)
≈ O

(
σ2

ε2

)
Therefore, Bernstein’s inequality gives roughly a Gaussian sample complexity for the
sample mean in this case.

3. Case 3: ε � σ2

M . Since σ2

ε2
has an inverse square dependence on ε, we have that

M
ε �

σ2

ε2
. Therefore, since σ2

ε2
dominates M

ε , Bernstein’s inequality gives the same
sample complexity for the sample mean as the Gaussian case.

Since Bernstein’s inequality does not give Gaussian-like performance in some regimes, it’s
pertinent to consider whether any concentration inequality can guarantee a Gaussian-like
sample complexity for the sample mean. Catoni 2012 provides a lower bound on the
sample complexity for the sample mean, which answers this question negatively:

Theorem 3.12 (Catoni 2012)2 Given a collection X1, . . . , Xn of independent random

variables, the sample mean Xn needs Ω( σ
2

ε2δ
) samples, assuming that the second moment of

Xn is finite.

Given this result, we know that there exists a bad distribution D so that the sample mean
requires at least Ω( σ

2

ε2δ
) samples to estimate the mean of D to additive error ε, with proba-

bility at least 1− δ. Hence, in the high probability regime (when δ is not fixed), the sample
complexity of the sample mean varies inverse linearly in δ, which blows up when δ is made
small. Conversely, the Gaussian sample complexity for the sample mean grows at a much
slower rate of log(1δ ). Therefore, the sample mean is a poor estimator of the true mean of a
collection of independent random variables because it does not have Gaussian-like perfor-
mance, as claimed by the CLT, for some distributions.

However, by examining the lower bound Ω( σ
2

ε2δ
) closely, you’ll notice that if we fix δ as

a constant, the lower bound has the same form as the sample complexity of the Gaussian
case! Namely, the Gaussian sample complexity for the sample mean 2σ

2

ε2
log(1δ ) differs from

σ2

ε2δ
only by a constant factor when δ is a fixed constant. So, in the constant probability

regime, the sample mean could be a Gaussian-like estimator. In fact, we can easily demon-
strate that the sample mean has Gaussian sample complexity in this regime. If we assume
{X1, . . . , Xn} is a collection of i.i.d. random variables with variance σ2, then

P(|Xn − E[Xn]| ≥ ε) ≤ σ2

ε2n
2https://arxiv.org/pdf/1009.2048.pdf
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Figure 2: Concentration of the Sample Mean

by Chebyshev’s inequality. Given this bound on Xn, it follows that the sample complexity
is

σ2

ε2n
≤ δ ⇐⇒ n ≥ σ2

ε2δ

So, if we fix δ as a constant, then the sample complexity of the sample mean becomes
n = O(σ

2

ε2
), which is Gaussian. Therefore, in the constant probability regime, the sample

mean is a good estimator of the true mean of X1, . . . , Xn.
The above observations can alternatively be summarized by Figure 2, which shows a

“bump” denoting the distribution of the sample mean normalized to variance 1, namely√
n
σ Xn. We can divide the bump into two regimes: the “body” which is within a constant

number of standard deviations from the mean, and the “tail” which is the rest of the
distribution. Thus, by Chebyshev’s inequality, the body is always Gaussian-like, in a big-O
sense. The tail, on the other hand, can be heavy (having a lot of mass, decaying very slowly)
and badly-behaved, from Catoni’s lower bound.

Moreover, since the sample mean provides a good constant probability estimate for the
true mean, we can combine it with the median trick from last lecture to design a high
probability algorithm known as Median of Means:

Algorithm 1: Median of Means

input : X1, . . . , Xn samples where n = O(σ
2

ε2
log(1δ ))

output: A mean estimate µ so that |µ− E[Xn]| ≥ ε with probability less than δ
steps:

1. Divide samples in to m = Θ(log(1δ )) groups

2. Compute sample mean Si for each group i, where each group is of size O(σ
2

ε2
)

3. Output median of {Si}mi=1

In the median of means algorithm, the sample mean of each group Si is within ε of the
true mean with probability ≥ 2

3 . This is done by selecting a group size of 3σ2

ε2
= O(σ

2

ε2
) in

Step 2 of the algorithm. Thus, using the median technique from last lecture, the success
probability of the entire algorithm is at least 1− δ.
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Remark 3.13 In conclusion, the median of means algorithm should be preferred over the
sample mean for estimating the mean of a collection of independent random variables with
high probability, as it provides Gaussian-like performance that is unattainable with the
sample mean in general.

5 Conclusions

• Constant probability algorithms are incredibly useful and can be used to build efficient
high probability algorithms; moreover, when designing high probability algorithms, a
constant probability counterpart should serve as a baseline for performance.

• While concentration inequalities are very useful, they are only an analysis technique
and shouldn’t be blindly applied.

• Don’t forget about Chebyshev’s inequality, which can be powerful (and tight) when
used correctly with other tools.

6 Additional Content

Theorem 3.14 (McDiarmid’s Inequality) Let {Xi}ni=1 be independent random vari-
ables, where each Xi : Ω −→ Si for some set Si. Consider f :

∏n
i=1 Si −→ R, and suppose that

f is Ci-lipschitz in the i-th coordinate of the input for all i. Then, for any ε > 0,

P(f(x1, . . . , xn)− E[f ] ≥ ε) ≤ exp
−2ε2∑n
i=1C

2
i

Remark 3.15 By Ci-lipschitz, we mean that given a Ci ∈ R≥0 and any two points
x = (x1, . . . , xi, . . . , xn), x′ = (x1, . . . , x

′
i, . . . , xn) ∈

∏n
i=1 Si that differ by only their i-th

corrdinate, we have that
|f(x)− f(x′)| ≤ Ci

Remark 3.16 Notice the connection between McDiarmid’s inequality and Hoeffding’s in-
equality. Simply set f(x1, . . . , xn) = 1

n

∑n
i=1 xi and you’ll get back Hoeffding’s inequality.
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